The Heat of the Moment:
Burns, Child Abuse and the MDT
Jonathan Thackeray, MD | June 24th, 2009
Center for Child and Family Advocacy | Nationwide Children's Hospital
The Ohio State University College of Medicine

Disclosure
• Neither I nor any member of my immediate family has a financial relationship or interest with any proprietary entity producing health care goods or services related to the content of this CME activity.
• I do not intend to discuss an unapproved or investigative use of commercial products or devices.

Objectives
• State the epidemiology of abusive burns in children
• Distinguish between the mechanisms and clinical presentation of thermal, radiant, chemical and electrical burns
• Recognize patterns of specific burn injuries based on appearance and location
• Recognize the key components of the history, including scene investigation, that are important when evaluating a child with burn injuries

Child Maltreatment Data - 2007
• 3.2 million referrals to child protective services agencies
 - U.S.: 10.6 / 1000 children
 - MS: 9.1 / 1000 children
 - 62% of these screened in for investigation
 - 900,000 substantiated
• 13% of children experienced more than one type of maltreatment
• 1760 deaths

Epidemiology of Burns
• Pediatric burns cause:
 - Over 250,000 injuries per year necessitating medical attention
 - Over 15,000 hospitalizations per year
 - Over 10,000 cases of severe disability per year
 - 1100 deaths per year
 - Third leading cause of mortality in children < 5 years of age

Epidemiology of Burns
• National Burn Repository Data 1999-2008

Children's Burn Foundation 2008
Burns Caused by Abuse/Neglect

- Multiple studies reporting the proportion of burns in children due to abuse/neglect
 - Range from 1% - 30%
 - More common in:
 - Lower socioeconomic status
 - Children from single-parent families
- In the U.S., scald burns from tap water are the most common abusive burn
- Abuse-related burns carry higher morbidity than accidental burns

Boys 2-3 times as likely to sustain abusive burns
- Mean age between 2 and 4 years
 - Corresponds with times of high ‘demand’
 - Toilet training
 - Enuresis
 - Excessive crying
- Children with inflicted burns 2.4-4.8 times more likely to have burns to hands, arms or legs bilaterally than children with accidental burns

Andronicus Burns 1998
- Child abuse was found in nearly half of children < 2 years with scald burns to perineum and/or genitalia

Angel J Pediatr Surg 2002

Pathophysiology

- Severity of a burn is based on:
 - Time of exposure
 - Temperature of agent
 - Type of agent
 - Heat-dissipating capacity of burned tissue (blood flow)

- Superficial burn
 - Damage to the epidermal layer
 - Normally heal within 5 to 7 days
 - Heals usually without scarring
 - Example: Sunburn

Figures reproduced with permission – BMJ 2004
Pathophysiology
- Partial thickness burns
 - Superficial
 - Dermis is 15-40 times as thick as the epidermis
 - Pain and blistering
 - Scarring dependent upon depth of wound

Pathophysiology
- Full thickness burns
 - Total necrosis of the skin components
 - Often painless as pain innervation is destroyed
 - Skin grafting necessary for large wounds
 - Significant scarring occurs

Burns: Medical Evaluation

Diagnostic Evaluation for Abuse
- History, history, history!
 - Who, what, when, where, and how
 - Who was caring for the child?
 - What events preceded the injury?
 - What was the child’s reaction?
 - What did the caregiver do?
 - When did the injury occur?
 - Where did it occur?
 - Developmental assessment of the child
 - What does the child say happened?
 - What does the caregiver say happened?
 - Keep in mind - 80% of burns for which a physician cannot match the history with the pattern of injury are later found to be accidental or negligent

Hammond South Med J 1991

Diagnostic Evaluation for Abuse
- Red Flags in the History:
 - Injury incompatible with child’s developmental abilities
 - Absent, changing, or evolving history
 - Delay in seeking medical care
 - Triggering event that precipitates loss of control in caregiver
 - Family crisis or stress
 - Prior history of abuse in caregiver

Illustration Copyright © 2009 Nucleus Medical Art, All rights reserved.
www.nucleusinc.com
Diagnostic Evaluation for Abuse

- Labs/Diagnostics
 - Skeletal survey
 - 5 (14%) of 36 burn patients had positive skeletal surveys
 - Mean age 1.8 +/- 1.5 years
 - AST/ALT for occult abdominal injury

Hicks Ped Emerg Care 2007

Potential Burn Mimics

- Moxibustion
- Phytophotodermatitis
- Infections
 - Impetigo
 - Herpetic whitlow
 - Staph scalded skin syndrome

Potential Burn Mimics

- Insect and arachnid bites
- Fat necrosis
 - Popsicle panniculitis
 - Trauma

Potential Burn Mimics

- Laxative-induced dermatitis (Senna)

Leventhal Pediatrics 2001

Types of Burn Injury

Thermal | Radiant | Chemical | Electrical
Thermal Burns
- Cause tissue damage from coagulation of tissue proteins
- Cell membrane is the most vulnerable to heat damage, but all components of the cell may be damaged
- Most commonly the result of:
 - Application of a liquid
 - Application of a hot object
 - Application of a flame (rare in young children)

Thermal
- Liquid burns
 - Scalding is the most frequent form of burn abuse
 - More than 80% of abusive scald burns are from tap water
 - Observed patterns:
 - Immerison pattern
 - “Stocking” and “glove” distribution
 - Skin-sparing patterns of immersion
 - Viscous vs. non-viscous substances

Child’s Response to Immersion Burn?
- Two prevailing theories:
 - Reflex is to withdraw from the burn
 - Child would struggle, kick, flail
 - Splash marks would be evident if burn is accidental
 - Child panics and ‘freezes’
 - Child holds perfectly still
 - Splash marks would be absent and child would have a symmetrical distribution of burn
- The reality is there likely exists a wide range of behavioral and pain response to burn injuries
- Because of this, patterns may influence the concern for inflicted injury – but should not be the sole basis for making a diagnosis

“Stocking” or “Glove” Pattern
- Sharp demarcation between injured and healthy skin
- Implies that the affected area has been immersed in a hot liquid

Sparing Pattern
- May see spared skin in areas of joint mobility
 - Elbows
 - Wrists
 - Popliteal fossa
 - Inguinal creases
- Implies either reflexive or forced flexion/extension of the area

Sparing Pattern
- May see sparing where skin is pressed against the surface of the container, which is relatively cooler than the liquid in which the child is immersed
 - Sole of foot
 - Palm of hand
 - Buttocks
Contact Burns
- Characterized by the configuration of the burning object
- Abusive injuries often more sharply defined than accidental ones
- May be relatively superficial
 - e.g. cigarette burns
- May be deep
 - e.g. metal iron

Cigarette Burns
- Intentional:
 - Firm contact typically produces a sharply-defined, circular, third-degree burn
 - Approximately 5-10mm diameter
 - Often on ‘exposed’ areas, such as hands, feet, head, and neck
- Accidental:
 - Typically causes only superficial “brush” burns
 - Short duration of exposure
 - Glowing coals insulated by layer of ash

Additional Patterns
- Stun gun injury
 - Circular lesions approximately 0.5cm in diameter
 - Evenly spaced 4-5 cm apart
- Hair dryers
- Car seats
- Enuresis blankets

Thermal Burns – Additional Readings
- Electric stoves
- Electric water heaters
- Glass-enclosed fireplaces
- Iron burns
- Oil burns
- Radiator burns
Radiant - Sunburn

- Sunburn
 - 70 to 85 percent of children and adolescents have reported at least one sunburn in the previous year
 - Burns range from painless erythema to painful erythema with edema/blistering
 - Recent history of sun exposure
 - Characteristic pattern of burn in exposed areas

Radiant - Microwave Burns

- Standard microwave oven has a 2-5 cm depth of penetration
- Tissues with higher water content (e.g., muscle) heat to a greater extent than those with lower water content (e.g., fat)
- Cause sharply demarcated burns and “sparing” of tissue levels

Chemical Burns

- Cause tissue damage through chemical reactions which alter
 - Extracellular matrix
 - Cellular membranes
 - Intracellular structures and molecules
 - Production/resorption of heat
- Tend to be deep
- Alkalis > acids

Chemical Burns

- Household cleaners/solvents
 - Hydrofluoric acid
- Cement
- Alcohol-based skin cleaners
- Alternative medicine home remedies
- Meth production
 - Anhydrous ammonia
 - Hydroiodic acid

Electrical Burns

- Cause tissue damage both from
 - Electroporative forces on cell membranes
 - Generation of heat
 - Heat = 0.24 x (Voltage)^2 x Resistance
 - Low voltage (domestic current)
 - Small, deep contact burns at entry/exit sites
 - Alternating nature can interfere with cardiac cycle
 - High voltage (1000V or greater)
 - Extensive tissue damage to soft and bony tissues
 - Rhabdomyolysis \(\Rightarrow\) renal failure
 - “Flash” injuries

Electrical Burn
Medical Management

Hospital Admission Criteria
- The following criteria indicate need for hospital admission and further management:
 - Age <10 years with 5 to 10 percent TBSA burn
 - Age ≥10 years with 10 to 20 percent TBSA burn
 - Full thickness burn 2 to 5 percent TBSA
 - High voltage injury
 - Suspected inhalational injury
 - Circumferential burn
 - Medical problem predisposing to infection (such as diabetes or sickle cell disease)
 - Concern for inflicted injury

Burn Center Referral Criteria
- The following criteria indicate need to receive care in a burn center:
 - Age <10 years with >10 percent TBSA burn
 - Age ≥10 years with >20 percent TBSA burn
 - Full thickness burn >5 percent TBSA
 - Inhalational injury
 - Any significant burn to face, eyes, ears, genitalia, or joints
 - Significant associated injuries (fractures or major trauma)

Minor Burns
- Pain management
- Cooling affected area to limit injury
- Keeping affected area clean, including topical antibiotic to prevent infection
- Tetanus prophylaxis if warranted
- Follow-up for signs of infection or healing complications

Major Burns
- Resuscitation (airway, breathing, circulation) as necessary
- Cooling affected area to limit injury
- Admission/transfer to pediatric burn center whenever possible
- Careful fluid resuscitation (modified Parkland formula)
- Debridement
- Dressing changes

Complications
- Death
- Infection, burn wound sepsis
- Vascular compromise
- Contractures
- Hypertrophic scarring
Psychological Outcomes
• Limitations of current research:
 − Abuse cases frequently excluded from studies
 − Existing literature focuses primarily on adults
 − Most studies monitor short-term follow-up
 • First few months/years are the most intense period of adjustment
 − Most abused children are too young to have formulated substantial self-concept or sense of significance of injury

Psychological Outcomes
• Recurring themes in the literature:
 − Burn patients, long-term, have higher incidence of anxiety than the general population
 − Most burn survivors develop a positive self-concept with high self-esteem
 • Overall sense of self-worth similar to non-burned peers
• Implications for providers:
 − We need a heightened awareness of possibility of future anxiety or affective disorders
 − We must encourage burn patients to capitalize on their strengths in areas of personal development

Case Discussions
Perspectives from the Multidisciplinary Team

Diagnostic Evaluation for Abuse
• Role of social workers
 − Often the first to perform an in-depth interview of the child victim and the alleged perpetrator
 • Emotions run high
 • Little time to construct an alternate story
 • Story may evolve over time
 • Event reconstruction
 • How, where, when, what, and who
 • Consider use of props (dolls, sinks, bathrooms)

Diagnostic Evaluation for Abuse
• Role of social workers
 − Psychosocial Assessment
 • Risk factors associated with child abuse?
 − Single-parent family
 − Relationship discord
 − Financial stress
 − Social isolation
 − Employment difficulties
 − Substance abuse
 − Domestic violence
 − CPS history

Diagnostic Evaluation for Abuse
• Role of social workers
 − Psychosocial Assessment
 • Risk factors associated with child abuse?
 − Role reversal in childcare responsibilities
 − Disabled child
 − Inappropriate expectations of the child
 − Poor bonding
 − Chaotic, erratic lifestyle
 − Delay in seeking medical care
Diagnostic Evaluation for Abuse

• Role of law enforcement
 - Interviews of the alleged perpetrator
 - Corroboration of the history
 - Cell phone records
 - Witness accounts
 - Security camera footage
 - Receipts/Credit card usage
 - Scene investigation

• Scene Investigation
 - Evaluation of site where burn reportedly occurred
 - Contact burns:
 - Object to match the pattern
 - Chemical burns:
 - Empty bottle or container
 - Evidence of a spill
 - Electrical burns:
 - Downed wires
 - Singe marks on carpet/furniture

Diagnostic Evaluation for Abuse

• Bathtub burns:
 - Layout of bathroom
 - Proximity to caregivers if not present at time of injury
 - Surface of the tub
 - Evidence of injury?
 - Sloughed skin
 - Wet towels/rugs/clothes

• What type of knob?
 - Can child reach?
 - Can child turn?
 - Separate hot/cold?

• Water temperature?
 - Water heater settings
 - Temperature when water turned on
 - Temperature x seconds later

Importance of Water Temperature

Derived from original data from Mortic and Henriques. Am J Pathol 1947

Diagnostic Evaluation for Abuse

• What is the height of the tub?
 - Can child enter tub alone?
 - 35% of children 18-18 months old can
 - How deep is internal tub?
 - Rate of filling/drainage?
Conclusions

• Up to 30% of pediatric burns may be due to abuse/neglect and tap water is the most frequent etiology of these burns
• Know the mechanism and recognize the clinical presentations of the many etiologies of pediatric burns (thermal, radiant, chemical, electrical)
• Specific patterns of burn injury may influence the concern for inflicted injury, but should rarely, if ever, be used as the sole basis for diagnosing abuse
• A detailed history, including a scene investigation, is critical when evaluating a burned child for possible abuse/neglect

References

• Allasio D et al. Immersion scald burns and the ability of young children to climb into a bathtub. Pediatrics 2003;111:1419-1421
• Faller Marquardt M et al. Cigarette burns in forensic medicine. Forensic Sci Int 2008;176:200-208

Acknowledgements

• Thank you to the following colleagues who provided images used in this presentation:
 • Sheila Giles, RN, CPN
 • Kathi Makoroff, MD
 • Megan McGraw, MD
 • Philip V. Scribano, DO, MSCE
 • Jennifer Tscholl, MD

References

• Hicks R et al. Skeletal surveys in children with burns caused by child abuse. Pediatric Emergency Care 2007;23(5):308-313